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Introduction

Augmented Reality (AR) has the potential to revolutionise
the way in which information is delivered to a user. By
tracking the user’s position and orientation, complicated
spatial information can be directly registered to the real
world in the context where it applies. We are focussing
our research on the problem of developing mobile aug-
mented reality systems which can be worn by an indi-
vidual user operating in a large, complicated environment
such as a city. Virtual sign posts can, for example, an-
nounce the name of anonymous streets. Hidden infras-
tructure such as sewer or gas lines can be shown beneath
a road surface. However, an urban environment is ex-
tremely complicated: it is populated by large numbers of
buildings, each of which can have numerous facts stored
about it. Therefore, it is very easy to inflict the user with
information overload. This problem is illustrated in Fig-
ure 1 which shows a screen capture from our mobile AR
system1. The purpose of this application is simple: the
system is trying to guide a user to an office in a small
building. The application should start by guiding the user
to the correct building, then to the correct entrance, and
finally to the correct office. Figure 1 shows what happens
when the system draws all the environmental data. The
display includes both relevant information (such as the
name and location of the building and the target office)
and irrelevant information (a detailed geometric model of
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1All the pictures for the AR system in this paper were captured by
mixing the output of our AR system together with data from a video
camera. The low quality of the images is due to limitations with the
current camera and video mixer configuration. If this paper is accepted,
we shall obtain better images.

Figure 1: Showing all available data leads to clutter and
confusion.

the exterior of the building, the interior of the building,
and all other data which lies within the view frustum but
is behind the foreground building). As can be seen, the
display is extremely complicated, confusing and uninfor-
mative.

To overcome these problems, we have begun to develop
algorithms for information filtering. These tools automat-
ically restrict the information which is displayed to min-
imise problems of information overload. Although the
algorithms are being developed in the context of mobile
augmented reality, they are drawn from several research
areas and we believe that the basic approach is applicable
in many other problem domains.

Information Filtering Approaches

Physically Based Methods

The simplest way to filter information is to use infor-
mation about the physical infrastructure of the environ-
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Figure 2: Distance-based is not sufficiently discriminat-
ing. Much irrelevant data is displayed.

ment. In particular, it is possible to usedistance-based
andvisiblity-basedfiltering. Distance-based filters thresh-
old an object’s visibility purely on the basis of its distance
from the user. If the distance exceeds some thresholdd,
the object is not shown to the user. Many graphics APIs
generalise this concept through the introduction of alevel
of detail: as the distance increases, progressively sim-
pler models are used. Visibility-based filters determine
whether an object is visible to the user and, if so, aug-
ments the visible part. This has the advantage that much
of the superfluous information behind the target building
in Figure 1 is eliminated.

However, such simple strategies are unsatisfactory be-
cause importance is not simply a function of distance or
visibilty from a user. The limitation of distance-based fil-
tering is shown in Figure 2: the visibility distanced has
been manually adjusted so that only the building which
contains the office is visible. However, to ensure that the
target office is visible, it is necessary to show a signifi-
cant amount of building infrastructure and other irrelevant
information. Visibility-only filtering undermines the im-
portant capability of providing a user with “X-ray vision”
and be able to see information about objects which aren’t
visible. Furthermore, it still does not identify important
information. In Figure 1 all of the objects on the front of
the building would still be annotated.

Visibility Filtering

Spatial Model of Interaction

A more sophisticated version of distance-based filtering
is thespatial model of interaction[2]. The spatial model
was first developed to consider the problems of awareness
and interaction in multi-user virtual environments, where
awareness can be used to determine whether or not an ob-
ject is visible to, or capable of interaction with, another
object. In this model, each object (e.g., a user), is sur-
rounded by afocus, specific to a medium (e.g., graphics
or sound), which defines the part of the environment of
which the object is aware in that medium. Each object
in the environment also has a medium-specificnimbus,
which demarcates the space within which other objects
can be aware of that object. If the focus and nimbus inter-
sect, the two objects can interact with one another.

The spatial model is a superset of simple visibility
based filtering. By allowing objects focuses and nimbuses
to be expanded, it provides further distance related infor-
mation. The spatial model has the advantage that it allows
different objects to be demarcated at different ranges. Fur-
thermore, it can leverage efficient collision detection algo-
rithms such as the Oriented Bounding Box Tree described
in [3]. Figure 3(a) shows the results when the user is far
away. The focus on the building and the entrance has been
extended and therefore, they are the only objects which
are visible. However, because the focus and nimbus are
fixed, as the user moves closer, the user automatically sees
more (irrelevant) data, as shown in Figure 3(b).

Rule-Based Filtering

Several researchers have addressed the problem of filter-
ing through the use of inference engines and rule-bases.
These are the most general form of information filtering
algorithm. Arbitrary relationships can be specified, main-
tained and adjusted as a user’s context and goals change.
KARMA [4], for example, used a rule-based approach to
select relevant information to assist a user performing a
maintenance and repair task. The user’s position and ori-
entation, inter-object occlusion relationships, and the role
that the objects play in a specific task to be accomplished
by the user, all determine whether and how objects should
be displayed, highlighted, and labeled on a tracked, see-
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(a) At a distance, the spatial model can be used to discriminate be-
tween only the most important information by expanding the nim-
bus on far away objects.

(b) However, as a user draws closer, their focus intersects with the
nimbus of all objects, irrespective of their relevance.

Figure 3: The Spatial Model of Interaction provides par-
tial functionality required by an information filtering sys-
tem.

Figure 4: Block diagram of the filtering algorithm.

through, head-worn display.
However, the problem with this approach is its potential

scalability concerns. The database of the examples shown
in this paper includes 30 buildings and over 740 distinct
objects, most of which are related to distant buildings
which are simply not relevant to the current user’s task.
Applying potentially computationally expensive, high or-
der decision logic to even such a simple example has the
potential to impose a substantial computational burden.
When the system is to be applied to a large environment
such as a city, the computational costs could become pro-
hibitive.

Hybrid Information Filtering System

From the previous discussion, it is clear that the most gen-
eral form of information filtering is to use a rule-base.
However, as explained above, it has significant computa-
tional concerns. The spatial model of interaction, to a first
order approximation, is capable of performing the initial
filtering which is required. Furthermore, it can leverage
efficient collision-detection algorithms. Therefore, our al-
gorithm is a hybrid of these approaches, and consists of
the four stages which are shown in Figure 4 [1]:

1. Initialize. Given knowledge of the user’s objectives
and goals, calculate the user’s focus and the nimbus
for each object. This calculation is carried out when-
ever an object’s property changes or the user’s objec-
tive changes.

2. Cull. Use the spatial model of interaction to elimi-
nate all objects whose nimbi do not intersect with the
user’s focus.

3. Refine.Apply higher order decision logic.

Stages 2 and 3 are performed periodically whenever the
user’s position and/or orientation has changed. Our cur-
rent implementation of Stage 2 only uses the intersection
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of the focus and nimbus. However, other operations (such
as visibility determination) could be incorporated as well.

To implement this algorithm, it is necessary to repre-
sent the user’s objectives and goals, the relevance of ob-
jects to those goals, and provide a mechanism for calcu-
lating the focus and nimbus. We encode the notion of
objectives and goals through the use ofobjectiveandsub-
jectivestates which are assigned to each object and each
user.

Objective properties are the same for all users, irrespec-
tive of the tasks which that user is carrying out. Such
properties include the object’s classification (for example
whether it is a building or an underground pipe), its loca-
tion, its size and its shape. This can be extended by noting
that many types of objects have animpact zone— an ex-
tended region over which an object has a direct physical
impact. A wireless networking system such as the Wave-
LAN, for example, is effective over a finite distance. This
region can be represented as a sphere whose radius equals
the maximum reliable transmission range. Conversely, a
more accurate representation could take account of the
masking and multi-path effects of buildings and terrain
through modeling the impact zone as a series of intercon-
nected volumes. Because of their differing physical prop-
erties, different media can have different impact zones.

Subjective properties attempt to encapsulate the
domain-specific knowledge of how a particular object re-
lates to a particular task for a particular user. Therefore,
they vary between users and depend on the user’s task
and context. We represent this data using animportance
vector. The importance vector stores the relevance of an
object with respect to a set of domain-specific and user-
scenario specific criteria. For example, if a user is follow-
ing a route to a particular office, only that office and route
information which leads to it is important — all other in-
formation is less important.

The objective–subjective property framework can be
applied to model the state of each user. Each user has
their own objective properties (such as position and ori-
entation) and subjective properties (which refer directly
to the user’s current tasks). Analogous to the importance
vector we define thetask vectorwhich stores the rele-
vance of a task to the user’s current activities. The use
of a vector means that a user can carry out multiple tasks
simultaneously and, by assigning weights to those tasks,
different priorities can be assigned. For example, at a cer-

tain time a user might be given a task to follow a route
between two points. However, the user is also concerned
that (s)he does not enter an unsafe environment. There-
fore, two tasks — route following and avoiding unsafe ar-
eas — run concurrently. The task vector is supplemented
by additional ancillary information. In the route follow-
ing task, the system needs to store the way points and the
final destination of the route.

Example

The scenario is that a mobile user will be given directions
to the location of Simon’s Office. The system is illustrated
in Figure 5, which shows the output of the system in three
separate locations2.

Figure 5(a), taken from the same position as that used
in Figure 3(b) shows that the second stage of the filter
eliminates all superfluous data not relevant to the route
following task. Therefore, only the entrance to the build-
ing is displayed. Figure 5(b) is taken inside the building.
A route has appeared, directing the user towards the of-
fice. Due to the action of the spatial model, only a subset
of the route is shown at any given time to avoid confus-
ing the user. In Figure 5(c), the user draws close to the
final destination. The display shows a final turn to the left
(potentially confusing in Figure 5(b)) and the final desti-
nation office.

Figure 5(b) shows a limitation with our current imple-
mentation. The blue rectangle to the left of the image is
actually the front of the target building. This is a route-
related object whose nimbus extends inside the building
and therefore the filter determines it is relevant to the user.
There are a number of ways to eliminate this artifact in-
cluding the use of visibility information (in stage 3 of the
filter), or redefining the task with a finer granularity. For
example, the task could be decomposed into two tasks of
entering the correct building and traversing to the correct
office within that building.

2It should be noted that, to date, tracking systems which operate in-
doors, outdoors and could be deployed over the area of a building are
still not available. For the purpose of this article, we assume that such
tracking systems exist. For a review of current work in tracking systems,
see the upcoming IEEE Computer Graphics and Applications special is-
sue on tracking.
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(a) View from the door, same as in Fig-
ure 3(b). Only the building and the correct
entrance are annotated.

(b) View along corridor inside building. A
route leads towards the final destination.

(c) As the user draws near the final destina-
tion, the destination office is shown as well
as a final turn in the route.

Figure 5: Sequence from example. See text for a descrip-
tion.

Conclusions

In this paper we have discussed information filtering al-
gorithms particularly tailored for the needs of mobile aug-
mented reality systems. We have presented a hybrid sys-
tem which allows the use of arbitrarily complicated de-
cision models but, at the same time, can leverage spatial
operators to significantly reduce scaling.

However, the work described in this paper only ad-
dresses the first of several stages required to build in-
formative user interfaces. First, it is necessary to man-
intain visual constraints between the objects to be anno-
tated and the annotations themselves. Blaine et al. refer to
the maintenance of these constraints asview management
and demonstrate algorithms which automatically size and
position virtual labels such that the labels do not overlap
one another or the objects which they are augmenting [5].
Second, it is unlikely that pixel-level registration can be
achieved with wearable tracking systems. MacIntyre et
al. have begun to develop algorithms to quantify regis-
tration errors to dynamically adjust augmentation to min-
imize potential ambiguities [6]. Both of these extensions
introduce a coupling between objects which are filtered
out and those which are not. Our current work is extend-
ing the filtering algorithm to explore these interdependen-
cies.
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